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I. Introduction 

The use of pseudopotentials in a floating spherical Gaussian orbital (FSGO) [1] 
framework has been the subject of some recent investigations [2-5]. It is not clear 
however whether pseudopotentials designed primarily with an eye towards 
performing Hartree-Fock type calculations are directly compatible with FSGO 
calculations. Those factors which make a pseudopotential "good"  in a Hartree- 
Fock calculation may have unfavorable effects when used in an FSGO framework. 
Thus for example, a well structured pseudopotential, designed to give an accurate 
description of  the effects of the core orbitals, may give very poor results in an FSGO 
calculation. This is because of the limited flexibility of the FSGO's.  By definition an 
FSGO cannot change its shape to adjust to the structure of the pseudopotential. 
Instead, the FSGO must change its size and/or position to adjust itself to a given 
field, which in turn results in a shift of the nuclear coordinates. A slight amount of 
structure in a pseudopotential may therefore cause a grossly exaggerated change in 
the molecular geometry. 

To help gain a better understanding as to which, if any, pseudopotentials can safely 
be used in an FSGO scheme, as well as the features which would render such a 
pseudopotential "useful" in an FSGO sense, we present in the present com- 
munication FSGO calculations employing a series of the more widely used 
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pseudopotentials for the first row hydrides. Included also are the methane results 
presented in an earlier paper [-5]. 

Sect. 2 contains a brief description of the pseudopotentials used in this work, with 
the results presented in Sect. 3. 

2. Description of the Pseudopotentials Used 

The purpose of the pseudopotential molecular orbital Hartree-Fock scheme is to 
allow one to work within the framework of the valence orbitals only. This is 
accomplished through the use of a one-electron pseudo-Hamiltonian given by 

He s _ � 8 9  - n~+ I z V A L .  I / . V A L u  vPSEUD 
= r c o u l  7- r e x c h  7- ( 1 )  

r 

where n v is the number of valence electrons, vvAL and ,1vAL -coul --oxoh are the appropriate 
Coulomb and exchange operators respectively due to the valence shell, and V PsEuD 
denotes the potential which must replace the effects of the core orbitals on the 
valence orbitals. 

The pseudopotentials used here can be broken into two categories: the core 
projection and the angular momentum projection pseudopotentials. The core 
projection pseudopotentials are given by 

v PsE~D = V(r) + y, Ocl~c)<~ocl ( 2 )  

c 

where V(r) is a local, spherically symmetric term containing some parameters, Bc is a 
parameter and the (Pc are the ground state core orbitals of the atom to which V PsEuD 
belongs. In the Coffey et al. [6] pseudopotential 

nc 
V(r) = - -  e -  = ( 3 )  

r 

where n c is the number of core electrons and a is a parameter adjusted to give 
optimum agreement with calculated valence energies. The parameter Bc is (ev - e~) 
the difference between the orbital energy of a given core orbital and the valence 
orbital energy of the valence orbital with the same symmetry, and the q~ are the 
single zeta Slater orbitals (from which the orbital energies were taken). For  the 
purpose of the present work, where Gaussian orbitals will be used, we follow the 
recommendation of Coffey et al. and expand V(r) in terms of six Gaussians, as well 
as expanding the Slater orbitals into three Gaussians each. 

The Bonifacic-Huzinaga [7] pseudopotential defines 

V ( r ) :  ~ a i e - ~ r 2  ( 4 )  
i = 1  ?' 

For the first row atoms na = 2, while A i and ~i, as well as B~ in (2), are adjustable 
parameters determined from atomic calculation, and the ~p~ are given by an 11-s 
Gaussian expansion of the ls orbital [7-1. 
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The second class of pseudopotentials comprises the angular momentum projection 
operator pseudopotentials, which are given by 

vPSEUD= ~, ~ V l ( r ) l Y i m ) ( Y l m  I (5)  
1=0 m= - I  

where the Y1m are the spherical harmonics, used to separate the different angular 
momentum components on the atom on which the pseudopotential is defined, and 
Vl(r) is in general a different radial potential for each angular momentum 
component. In the Simons I-8] pseudopotential V~(r) is given by 

V1( r)= 72- I<_/MAX 

0 />/MAX 

(6) 

where C} is an adjustable parameter (adjusted so that the single-valence-electron 
atoms or ions have orbital energies equal to the experimental ionization potentials) 
and/MAX is the highest orbital angular momentum value in the ground state of the 
atom. For the Schwartz et al. [4, 9] pseudopotential we have 

( C~ e_~r 2 /--</MAX 
r 

V , ( r )  = 

CIMAX e-~r2 l>/MAX 
r 

(7) 

where C~ is analogous to C1 and where c~ now serves as an additional parameter for 
each atom. For this work all higher C~ are set at this highest l value (Refs. [ 10, 11 ]). 
At this point we mention that for the purpose of simplifying FSGO calculations 
Semkow et al. [3] and Ray Switalski [-4] have replaced the projection operator 
terms by a single spherical term with CAr , (or C"Av ) given by 

C i (or C~)M z 
cAv, (or c~v)-  i (8) 

l 

where M l is the number of valence orbitals in the atom of l symmetry incorporated 
into V(r). As pointed out in Refs. [2, 5], this averaging is not justified. 

For the Topiol et al. [10, 11] pseudopotentials one has 

V,(r) = Z Di'l exp ( - ~i, i r2) (9) 
i rmi, 1 

where the Di, 1, ~i,, and m~, l are adjustable parameters and I goes from zero to at least 
1 higher than the highest l value in the core being replaced (e.g. /MAX > 1 for Li 
through Ne) and all higher V~ are set equal to the VLMAX. 
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3. Results and Discussion 

Table 1 gives the total (valence) energies for the final optimized geometries in these 
first row hydride calculations. These total energies are not directly comparable since 
the energies found in these calculations depend on the form of the potential as well as 
the values of the parameters, which can be adjusted to give as low an energy as 
desired. They do, however, allow one to monitor the calculations to spot check for 
any possible collapsing onto the core. Thus, for example for the NH 3 calculations, 
both of the core projection type pseudopotentials did not prevent lone-pair orbitals 
from collapsing into the core. This is because the non-local core projection term 
(IcPc) ((Pcl) is basis-set dependent. An FSGO orbital basis has sufficient flexibility to 
penetrate such a pseudopotential, thus leading to the observed collapse. Such 
collapse was not observed in the hydrides of Be, B, C or Li. For the first three of 
these, FSGO constrains the bonding orbitals to be equivalent; thus their collapse 
would be prevented by bond pair-bond pair repulsion, independent of the 
pseudopotential. For LiH, the H + attraction may help to prevent collapse. At any 
rate, the parameters as given in Refs. [6, 7] do lead to lone-pair collapse. 

Before beginning the discussion of the resulting geometries, we point out that all of 
the pseudopotentials used here are based on either experimental or more accurate ab 
initio calculations. The FSGO method itself depends on a consistent treatment of a 
crude model, in which certain errors due to the rough (subminimal) valence 
description are compensated for by a consistent treatment of all orbitals. One would 
then hope that when pseudopotentials are used in conjunction with the FSGO 
scheme, one would maintain this consistency, thus obtaining the all-electron FSGO 
or improved results. Poor results may be an indication of an incompatibility 
between the FSGO setup and the particular pseudopotential in question. 

For the angular momentum projection operator potentials, the Simons potential, as 
suggested by Barthelat and Durand [2], seems to give the best agreement with full 
FSGO calculation (Tables 2 and 3). In both the Simons and the Schwartz and 
Switalski potentials, the results tend to deteriorate when one uses C A vin place of the 

Table 2. Equilibrium FSGO bond distances (in a.u.) a 

Molecule LiH Bel l  2 BH 3 CH,  NH 3 H20  HF 

Source 
FSGO 3.23 2.67 2.35 2.11 1,91 1.67 1.48 

Experimentg 3.02 (2.54) (2.3) 2.07 1.91 1.81 1.73 
Coffey et al. 3.06 2.59 2.32 2.09 b b b 

Bonifacic-Huzinaga 3.38 2.73 2.43 2.18 b b b 

Simons 2.94 2.63 2.34 2.06 1.91 1.6& 1.47 
Simons (C~v) 3.33 a 2.39 d 2.46 d 2.12 a 2.98 d 3.0 a 3.09 a 
Schwartz-Switalski . . . .  2.36 2.15 1.92 1.68 1.49 
Schwartz-Switalsi (C'Av) 3.63 f 3.02 f 2.42 f 2.13 r 1.84 r 1.63 f 1.46 r 

Topiol et al. 3.66 3.02 3.01 2.50 2.12 1.91 1.65 

a-f See footnotes a - f  to Table 1. 
g Ref. [12]. 
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Ct (consistent with the discussion above, and Refs. [-2, 5]). The bond distances 
from the Simons potential tend to be shorter than the all-electron FSGO results. 
Since the all-electron FSGO bond lengths are too long on the left of the periodic 
table, the use of  the Simons potential improves these results. On the other hand, 
towards the right side of  the periodic table, where the all-electron FSGO results tend 
to be too short [1], the use of  the Simons potential gives slightly poorer results. 

The Schwartz and Switalski potentials tend to give results which exaggerate the 
FSGO errors. Thus, to the left of  the periodic table, where the all-electron FSGO 
bond lengths are already too long, the use of  the Schwartz and Switalski potential 
makes them longer (and analogously to the right of  the table). 

The Topiol e t  al. pseudopotentials tend to give bond distances that are too long 
(except for HF). It  is suggested that the more structured nature of  this potential 
makes it difficult for the FSGO scheme to adjust itself to the potential. 

Table 3. Bond angles a (in degrees) 

Molecule NH 3 H20 

Source 
FSGO 87.6 88.4 
Experiment 106.6 104.5 
Simons 87.5 87.4 b 
Simons (CAr) 120 c 180 ~ 
Schwartz and Switalski 88.9 88.6 
Schwartz and Switalski (C'Av) 83.9 d 85.3 d 
Topiol et al. 92.9 92.7 

a Values reported are from this work unless otherwise indicated. 
b Barthelat, J. C., Durand, Ph. : Chem. Phys. 40, 407 (1976). 
~ Ref. [3]. 
d Ref. [4]. 

4. Conclusion 

It appears that the core-projection type pseudopotentials cannot safely be used in an 
FSGO calculation. Of the angular momentum projection pseudopotentials tested 
here, the Simons potential appears to be the best, perhaps because of its limited 
flexibility (little structure in the V~(r)) and the semiempirical fit to ionization 
potentials. One should point out, however, that because of the functional form 
(C / r2 ) ,  these potentials die off rather slowly. Because of this, one should test for 
possible long range effects which may interfere with the calculations on larger 
molecular systems. The generally poor  results of  these calculations suggest that a 
pseudopotential more compatible with the FSGO scheme is required; work on this 
is continuing. 



Pseudopotential Calculations Using the FSGO Method 183 

Acknowledgments. We are grateful to Professor Max Goldstein of the ERDA Courant Computing Center 
for a generous grant of computer time, and to the National Science Foundation for support of this work. 
We also are indebted to Professors G. Simons, C. Ewig and J. van Wazer for helpful suggestions. We also 
thank the referee for his remarks. 

References 

1. Frost, A. A. : J. Chem. Phys. 47, 3707 (1967); 47, 3714 (1967); J. Phys. Chem. 72, 1289 (1968); "The 
floating spherical Gaussian orbital method", in: Modern theoretical chemistry, Vol. 2, H. F. Schaefer 
III Ed. New York: Plenum 1976 

2. Barthelat, J. C., Durand, P. H. : Chem. Phys. Letters 16, 63 (1972); J. Chim. Phys. 71,505 (1974); 
Chem. Phys. Letters 40, 407 (1976) 

3. Semkow, A. M., Suthers, R. A., Linnett, J. W. : Chem. Phys. Letters 32, 116 (1975) 
4. Ray, N. K., Switalski, J. D.: J. Chem. Phys. 63, 5053 (1975) 
5. Topiol, S., Frost, A. A., Ratner, M. A., Moskowitz, J. W.; J. Chem. Phys. 65, 4467 (1976) 
6. Coffey, P., Ewig, C. S., Van Wazer, J. R.: J. Am. Chem. Soc. 97, 1656 (1975) 
7. Bonifacic, V., Huzinaga, S. : J. Chem. Phys. 60, 2779 (1974) 
8. Simons, G.: J. Chem. Phys. 55, 756 (1971) 
9. Schwartz, M. E., Switalski, J. D.: J. Chem. Phys. 57, 4125 (1972) 

10. Kahn, L. R., Goddard III, W. A. : Chem. Phys. Letters 3, 667 (1968); J. Chem. Phys. 56, 2685 (1972); 
Melius, C. F., Olafson, B. D., Goddard III, W. A. : Chem. Phys. Letters 28, 457 (1974) 

11. Topiol, S. : Ph.D. Thesis, New York University (1976); Topiol, S., Moskowitz, J. W., Melius, C. F., 
Newton, M. D., Jafri, J.: Courant Inst. of Math. Sciences (Report C 00-3077-105) 

12. Sutton, L. E.: Interatomic distances, Special Publication No. 18. London: The Chemical Society 
1965 

Received January 12, 1977/February 21, 1977 


